2 research outputs found

    pdCSM-cancer: Using Graph-Based Signatures to Identify Small Molecules with Anticancer Properties.

    Get PDF
    The development of new, effective, and safe drugs to treat cancer remains a challenging and time-consuming task due to limited hit rates, restraining subsequent development efforts. Despite the impressive progress of quantitative structure-activity relationship and machine learning-based models that have been developed to predict molecule pharmacodynamics and bioactivity, they have had mixed success at identifying compounds with anticancer properties against multiple cell lines. Here, we have developed a novel predictive tool, pdCSM-cancer, which uses a graph-based signature representation of the chemical structure of a small molecule in order to accurately predict molecules likely to be active against one or multiple cancer cell lines. pdCSM-cancer represents the most comprehensive anticancer bioactivity prediction platform developed till date, comprising trained and validated models on experimental data of the growth inhibition concentration (GI50%) effects, including over 18,000 compounds, on 9 tumor types and 74 distinct cancer cell lines. Across 10-fold cross-validation, it achieved Pearson's correlation coefficients of up to 0.74 and comparable performance of up to 0.67 across independent, non-redundant blind tests. Leveraging the insights from these cell line-specific models, we developed a generic predictive model to identify molecules active in at least 60 cell lines. Our final model achieved an area under the receiver operating characteristic curve (AUC) of up to 0.94 on 10-fold cross-validation and up to 0.94 on independent non-redundant blind tests, outperforming alternative approaches. We believe that our predictive tool will provide a valuable resource to optimizing and enriching screening libraries for the identification of effective and safe anticancer molecules. To provide a simple and integrated platform to rapidly screen for potential biologically active molecules with favorable anticancer properties, we made pdCSM-cancer freely available online at http://biosig.unimelb.edu.au/pdcsm_cancer

    Uncovering the Molecular Drivers of NHEJ DNA Repair-Implicated Missense Variants and Their Functional Consequences

    No full text
    Variants in non-homologous end joining (NHEJ) DNA repair genes are associated with various human syndromes, including microcephaly, growth delay, Fanconi anemia, and different hereditary cancers. However, very little has been done previously to systematically record the underlying molecular consequences of NHEJ variants and their link to phenotypic outcomes. In this study, a list of over 2983 missense variants of the principal components of the NHEJ system, including DNA Ligase IV, DNA-PKcs, Ku70/80 and XRCC4, reported in the clinical literature, was initially collected. The molecular consequences of variants were evaluated using in silico biophysical tools to quantitatively assess their impact on protein folding, dynamics, stability, and interactions. Cancer-causing and population variants within these NHEJ factors were statistically analyzed to identify molecular drivers. A comprehensive catalog of NHEJ variants from genes known to be mutated in cancer was curated, providing a resource for better understanding their role and molecular mechanisms in diseases. The variant analysis highlighted different molecular drivers among the distinct proteins, where cancer-driving variants in anchor proteins, such as Ku70/80, were more likely to affect key protein–protein interactions, whilst those in the enzymatic components, such as DNA-PKcs, were likely to be found in intolerant regions undergoing purifying selection. We believe that the information acquired in our database will be a powerful resource to better understand the role of non-homologous end-joining DNA repair in genetic disorders, and will serve as a source to inspire other investigations to understand the disease further, vital for the development of improved therapeutic strategies
    corecore